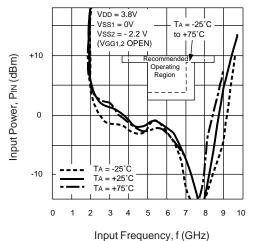
9 GHz DIVIDE-BY-4 DYNAMIC PRESCALER

FEATURES


NE

• WIDE OPERATING FREQUENCY RANGE: f_{IN} = 3.5 to 9.0 GHz (T_A = 25°C)

- DIVISION RATIO OF 4
- GUARANTEED OPERATING TEMPERATURE RANGE: -25°C to +75°C

INPUT POWER vs. INPUT FREQUENCY

UPG503B

DESCRIPTION

The UPG503B is a GaAs divide-by-4 prescaler that is capable of operating up to 9 GHz. It is designed to be used in the frequency synthesizers of microwave communication systems and measurement equipment. The UPG503B is a dynamic divider. It employs buffered FET logic (BFL). The UPG503B is available in a hermetic 8-lead ceramic flat package.

ELECTRICAL CHARACTERISTICS¹ (TA = 25°C, VDD = 3.8 V, VSS1 = 0 V, VSS2 = -2.2 V)

PART NUMBER PACKAGE OUTLINE			UPG503B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
ldd	Supply Current	mA	40	80	130
ISS1	Sink Current ² Iss1 = IDD - Iss2	mA		27	
Iss2	Sink Current ²	mA	21	53	93
fin(U)	Upper Limit of Input Frequency, PIN = +9 to +10 dBm	GHz	8.6	9.0	
fIN(L)	Lower Limit of Input Frequency, PIN = +9 to +10 dBm	GHz		3.5	3.7
PIN	Input Power, fin = 3.7 to 8.6 GHz fin = 5.0 to 7.4 GHz	dBm dBm	9.0 3.0		10.0 10.0
Роит	Output Power, $f_{IN} = 8.6 \text{ GHz}$, $P_{IN} = +10 \text{ dBm}$ $f_{IN} = 3.7 \text{ GHz}$, $P_{IN} = +10 \text{ dBm}$	dBm dBm	0 0	3 3	
Rтн	Thermal Resistance, Channel to Case	°C/W			10

Note:

1. Device may exhibit low frequency spur typically below 150 Hz and -45 dBm.

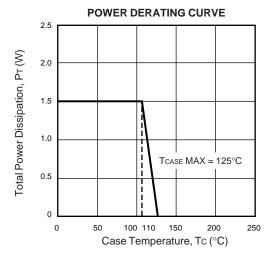
2. Current is positive into the IDD pin and returns through the ISS1 and ISS2 pins.

ELECTRICAL CHARACTERISTICS TA = 25°C to +75°C, VDD = 3.8 V, VSS1 = 0 V, VSS2 = -2.2 V)

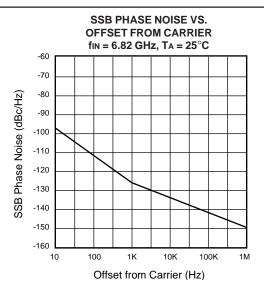
PART NUMBER PACKAGE OUTLINE			UPG503B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Idd	Supply Current	mA		80	
ISS1	Sink Current ¹ Iss1 = IDD - Iss2	mA		27	
Iss2	Sink Current ¹	mA		53	
fin(U)	Upper Limit of Input Frequency, PIN = +9 to +10 dBm	GHz	8.0		
fin(L)	Lower Limit of Input Frequency, $PIN = +9$ to +10 dBm	GHz			4.0
Pin	Input Power, fin = 4.0 to 8.0 GHz fin = 5.0 to 7.0 GHz	dBm dBm	9.0 4.0		10.0 10.0
Роит	Output Power fin = 8.0 GHz, Pin = +10 dBm fin = 4.0 GHz, Pin = +10 dBm	dBm dBm	-1.0 -1.0	2.0 2.0	

Note:

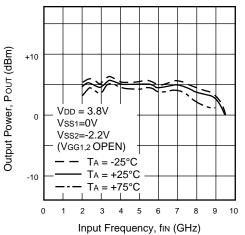
1. Current is positive into the IDD pin and returns through the ISS1 and ISS2 pins.

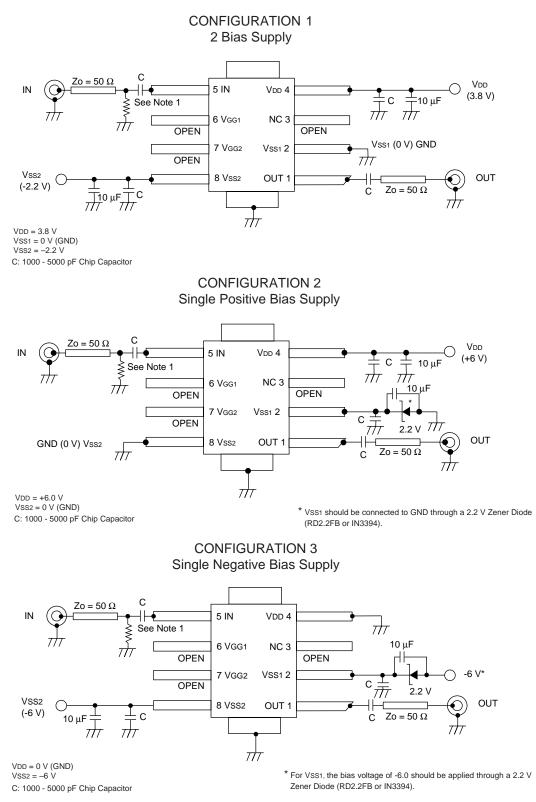

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
VDD-VSS1	Supply Voltage	V	5.0
VSS2-VSS1	Supply Voltage	V	-5.0
Pin	Input Power	dBm	13
Рт	Total Power Dissipation ²	W	1.5
Tstg	Storage Temperature	°C	-65 to +175
Тс	CaseTemperature	°C	-65 to +125


Notes:

1. Operation in excess of any one of these conditions may result in permanent damage.

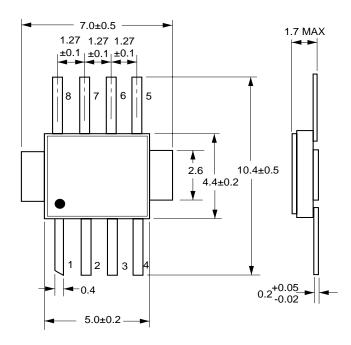

2. Tc ≤ 125°C


TYPICAL PERFORMANCE CURVES (TA = 25°)

OUTPUT POWER vs. INPUT FREQUENCY

POWER SUPPLY CONFIGURATIONS (VGG1 and VGG2 are normally open)

Notes:


1. Because of the high internal gain and gain compression of the UPG503B, the device is prone to self-oscillation in the absence of an RF input signal. This self-oscillation can be suppressed by either of the following means:

- Add a shunt resistor to the RF input line. Typically a resistor value between 50 and 1000 ohms will suppress the selfoscillation (see the test circuit schematic).
- Apply a negative voltage through a 1000 ohm resistor to the normally open VGG1 connection. Typically voltages between 0 and -9 volts will suppress the self-oscillation.

Both of these approaches will reduce the input sensitivity of the device (by as much as 3 dB for a 50 ohm shunt resistor), but otherwise have no effect on the reliability or electrical characteristics of the device.

OUTLINE DIMENSIONS (Units in mm)

UPG503B **PACKAGE OUTLINE BF08**

LEAD CONNECTIONS:

1. OUTPUT	5. INPUT
2. VSS1	6. VGG1
3. NC*	7. Vgg2
4. Vdd	8. Vss2

* No Connection